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FINITE ELEMENT METHODS FOR PROBLEMS 

IN DYNAMIC ELASTICITY 

Lois Mansf ield 

ABSTRACT 

Finite element methods which are explicit in time are given for both 

the linearized and nonlinear problems in dynamic elasticity. 

the systems involved are written as first order hyperbolic systems. Con- 

vergence is proved for both the semi-discrete and discrete finite element 

methods for the linearized problem, and stability is proved for the 

semi-discrete finite element method for the nonlinear problem. 

In both cases 

T h i s  report was prepared as a result of work performed under NASA Con- 
tract No. NAS1-14101 while the author was in residence at ICASE, NASA Langley 
Research Center, Hampton, VA. 
National Science Foundation Grant MCS76-06293. 

This research was also supported in part by 



I. I n t r o d u c t i o n  

I n  t h i s  paper we  cons ider  f i n i t e  element methods t o  s o l v e  both t h e  

I .  

I -  

l i n e a r i z e d  and t h e  non l inea r  problems i n  dynamic e l a s t i c i t y .  We are 

p a r t i c u l a r l y  i n t e r e s t e d  i n  f i n i t e  element methods wi th  e x p l i c i t  time 

d i s c r e t i z a t i o n s .  Although t h e  f i n i t e  element method i s  i n h e r e n t l y  i m -  

p l i c i t ,  t h e  use of e x p l i c i t  t i m e  d i s c r e t i z a t i o n s  i n  non l inea r  problems 

produces a l i n e a r  system which i s  independent of t i m e  t o  b e  so lved  a t  

each t i m e  s t e p .  Thus, a l though the mass matrix must be f a c t o r e d ,  t h i s  

f a c t o r i z a t i o n  needs t o  be done only once. A l t e r n a t i v e l y ,  t h e  l i n e a r  

system Mx = b y  f o r  M t h e  mass matrix,  can e a s i l y  be so lved  us ing  a 

few i t e r a t i o n s  of SOR, s i n c e  t h e  so lu t ion  a t  t h e  previous t i m e  s t e p  

provides  a very good i n i t i a l  approximation. 

I n  t h e  l i n e a r i z e d  problem i n  dynamic e l a s t i c i t y  one seeks  t o  f i n d  

- u and g such t h a t  

where 

2 
a 0  a ui 

j 
ax 
A + f i = P T  

at: 
i n  R , 

and 

s u b j e c t  t o  t h e  i n i t i a l  cond i t ions  

( 4 )  - U(X,O) = u&) , -t u ( X Y O )  - = “lt$ . 

Throughout w e  s h a l l  t ake  the  boundary condi t ion  t o  be 

, 
, u = o  on a R  . (5) - 



Here 3 is  the  displacement v e c t o r ,  0 and E are r e s p e c t i v e l y  the s t r e s s  

and s t r a i n  tensors ,  E i s  Hooke's t e n s o r ,  p i s  t h e  d e n s i t y ,  and f i s  

t h e  e x t e r n a l  force .  I n  (1) w e  have adopted t h e  summation convention t h a t  

t he  repea ted  subscr ip t  j i n  t h e  f i r s t  term i n d i c a t e s  an implied summation 

over j .  

- - 

- 

To make expos i t ion  easier w e  s h a l l  g ive  our  r e s u l t s  f o r  tlie one dimen- 

s i o n a l  scalar model problem 

u = u  + f  . tt  xx (6) 

A l l  of our  r e s u l t s ,  however, have immediate ex tens ions  to (1) - ( 3 ) .  

The system (1) - (3)  has  been l i n e a r i z e d  i n  t h a t  t h e  a c t u a l  s t r a i n -  

displacement r e l a t i o n s  

(7)  

have been replaced by ( 3 )  under t h e  assumption t h a t  t h e  displacements  

u = x - a a re  s m a l l  enough t h a t  second o rde r  terms i n  ( 7 )  can be  

neglected.  For l a r g e  displacements  one a l s o  must d i s t i n g u i s h  between 

i i i 

Lagrange o r  undeformed coord ina tes  ai and Euler  o r  deformed coord ina te s  

In  Lagrange coord ina te s ,  one ob ta ins  i .  X 

a 2 ui 
a 3% -(S. ( 6 .  +-)I + f i  = P 2  

a t  aa Jk i k  aak 
j 

along wi th  (2)  and ( 7 ) ,  where - S i s  t h e  second Piola-Kirchoff stress t enso r  

and 6ik i s  t h e  Kronecker d e l t a .  Again, w e  s h a l l  g ive  our  r e s u l t s  f o r  t h e  

one dimensional s c a l a r  model equat ion  

t t  + f = u  

-2- 



These results have immediate extensions to (7) - (8). 

The method of solution used in this paper is to write (6)  and (9) as 

first order systems. 

and discrete Galerkin approximations. Except in special cases, e.g. 

linear finite elements in any dimension and smooth splines in one dimension, 

all on nearly uniform meshes, one obtains one order less than the optimal 

rate of convergence in the semi-discrete Galerkin approximation. By 

nearly uniform meshes, we mean meshes which are obtained by starting 

with an arbitrary coarse grid, or triangulation, but then always refining 

these intervals, or triangles, uniformly. 

For (6 )  we prove the convergence of semi-discrete 

We prove convergence of the discrete Galerkin approximation obtained 

by using the staggered (half-step) variant of the leap-frog method. 

In addition, we show that the third order Runge-Kutta method applied to the 

semi-discrete system is stable, and thus convergent with third order 

accuracy in time (since stability + consistence = convergence). In 

the same way, it can be shown that the second and fourth order Runge-Kutta 

methods are not stable for semi-discrete Galerkin systems. 

In section 3,  we write the nonlinear problem ( 9 )  as a first order 

system. We show that the semi-discrete Galerkin approximation to this 

system is stable. This follows from the fact that the system conserves 

energy. 

It has been shown in [l] that the optimal rate of convergence is 

obtained in semi-discrete approximations to second order hyperbolic 

equations. However, in elasticity it is the stresses which are of the most 

interest. Since the stresses are derivatives of the displacements solved 

for in the second order problem, the same order of convergence is obtained 

for the stresses in either method, except in the special cases n o t e d  above 

where the solution obtained by the first order system will have a higher 

order of convergence. 

-3- 



Engineers [ Z ]  have u s u a l l y  worked wi th  t h e  second o rde r  system. Since 

t h e  amount of work needed to ob ta in  the  stresses a t  mesh p o i n t s  seems t o  

be roughly the  same i n  e i t h e r  method, f u r t h e r  a n a l y t i c a l  and experimental  

work needs t o  b e  done t o  compare these  two methods. E x p l i c i t  € i n i t e  

element methods f o r  hyperbol ic  equat ions  have been c o n s i d e r e d  prev ious ly  

by Gekeler [ 4 ]  and Mock [ l o ] .  

11. The Linear Problem 

We l e t  w = ut,  0 = UX’ and write ( 6 ) ,  ( 4 ) ,  and (5)  as 

w t = o x + f  

(10) 
0 = w  
t X 

i n  ( O , l ) ,  t > 0 

s u b j e c t  t o  the  i n i t i a l  cond i t ions  

0 
3U 

9 ~ ~ X , O )  = -(x) = a,(x> y 
W ( X Y 0 )  = u,(x> ax (11) 

and t h e  boundary condi t ion  

(12) w(0 , t )  = w(1, t )  = 0 

For H a Banach space wi th  norm 1 1  ] I H  and v: [O,T] -+ H Lebesque 

measurable the  fol lowing norms a r e  def ined  

and 

L e t  

2 Throughout we  use 1 1  1 1  t o  denote the  usua l  L norm over T = ( 0 , l ) .  
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1 1 
Choose f i n i t e  dimensional  subspaces Vh C HO(O,l) and S h C  H ( O y l ) .  

2 The semi-discrete  Galerkin method w e  cons ider  is: 

gh E L (OyT;Sh) 

f i n d  wh E L (OyT;Vh) 

2 such t h a t  

W e  assume t h a t  t h e  subspaces Vh and Sh have t h e  fol lowing approximation 

p r o p e r t i e s .  

2 5 r < q then t h e r e  i s  some vh6Vh such t h a t  
- 1' 

1 There i s  some q l -  > 2 such t h a t  i f  ~ E H ~ ( O , ~ ) ~ H ~ ( O , ~ ) ,  

(15) 

where C i s  independent of v and v h '  There i s  some q2 - > 2 such t h a t  

i f  p E HS(Oyl), 2 5 s 5 q2' then the re  i s  some ph f Sh such t h a t  

(16) 

where C i s  independent of p and Ph. 

-5- 



Theorem 1. The semi-discrete  Galerkin method def ined  by (13) - 
2 2 

(14) has  a unique s o l u t i o n  

s o l u t i o n  (w,?) t o  (10) - ( 1 2 )  s a t i s f i e s  w E L ~ ( O , I ' ; H ~ ( O , ~ ) )  

a w / a t  E L~(o,T;H~(o,I)), and c ' ~  L~(O,T;H~(O,~)), 

w,, E L  (OyT;Vh) , O h €  L (OyT;Sh). I f  t h e  exact  

2 
ac r / a t  E L  (o,T;H'(o,I)), 

then  t h e r e  e x i s t s  a cons tan t  C = C ( T )  such t h a t  

where 1-1 = min(r-1, s-1) and C is independent of h. 

Proof:  Existence and uniqueness follows from t h e  f a c t  t h a t  (13) - 

(14) are equiva len t  t o  an i n t i a l  va lue  problem f o r  a system of ord inary  

d i f f e r e n t i a l  equat ions,  which can e a s i l y  be shown t o  possess  a unique so- 

l u t  ion.  

L e t  

where 

From (13) and (10) 

w E Vhy 5 E: S s a t i s f y  (15) and (16) r e spec t ive ly .  
h h h  



I I  + 2 f i  I 1  4J II OJ 

L (0,T;L2(0,1)) ax L~ (0, T ; L ~  (0,1) 

Now t a k e  t h e  sup over 0 5 6 2 T t o  obtain 

-7 - 



a (W-W,) 

+ 2m, II ax 'I 2 
L (O,T;L2(0,l)) 

The i n e q u a l i t y  (17) now fo l lows  from t h e  t r i a n g l e  i n e q u a l i t y  and (14).  

S i m i l a r l y  t o  t h e  r e s u l t s  of Dupont [ 3 ]  f o r  ut + ux = 0 and t h e  

r e s u l t s  of Lesaint  [8] f o r  p o s i t i v e  symmetric hyperbol ic  systems, w e  o b t a i n  

one less than  the opt imal  o rde r  of convergence. I n  [ 9 ]  i t  w a s  shown t h a t  

f o r  c e r t a i n  subspaces, namely l i n e a r  f i n i t e  elements and smooth s p l i n e s  on 

nea r ly  uniform meshes, t he  las t  two i n n e r  products  i n  (18) are r e a l l y  one 

order  of magnitude smaller than  p red ic t ed  by the  s t r a igh t fo rward  use  of 

t he  Schwartz inequa l i ty  and (15) and (16).  The easiest way t o  see t h i s  

is  t o  compare these inner  products  w i th  what corresponds t o  the  l o c a l  

t runca t ion  e r r o r  i n  f i n i t e  d i f f e r e n c e  a n a l y s i s .  For d e t a i l s ,  see [ 9 ] .  

In  t h e  mathematical f i n i t e  element l i t e r a t u r e  t h e  usua l  d i s c r e t e  t i m e  

method which i s  analyzed is  t h e  Crank-Nicholson method. 

t o  show t h a t  t h i s  method when appl ied  t o  (13) is  second o rde r  accu ra t e  i n  

A t  and has  the  accuracy i n  space proved i n  Theorem 1, independent of any 

r a t i o  of A t  t o  h. We omit t h e  proof .  Because w e  are i n t e r e s t e d  i n  us ing  

e x p l i c i t  methods on t h e  nonl inear  problem, w e  analyze a s taggered s t e p  

leap-frog method. L e t  T = A t N  f o r  some i n t e g e r  N and v = v(*,dt). 

This  method can be descr ibed ,  f o r  0 5 n 5 N ,  as 

It i s  s t r a igh t fo rward  

m 



where f o r  n = 0, (24a) is replaced by 

and wo and 0' are obtained from (14). 

i n v e r s e  assumption t h a t  

On t h e  space Vh we make tlie 

where t h e  cons t an t  a i s  independent of 4 and h. This  assumption is  

s a t i s f i e d  by a l l  f i n i t e  element subspaces comonly  i n  use ,  provided some 

r e g u l a r i t y  i s  imposed on t h e  manner i n  which t h e  mesh is re f ined .  For 

example, i n  one dimension t h e  r a t i o  of t h e  l e n g t h s  of t h e  l a r g e s t  t o  t h e  

smallest i n t e r v a l  should remain bounded as h goes t o  zero.  For t r i angu-  

l a t i o n s  i n  two dimensions t h e r e  is an  a d d i t i o n a l  requirement t h a t  t h e  

smallest ang le  i n  any t r i a n g l e  s tay  bounded away from zero.  

Theorem 2. L e t  (w,a) be t h e  exac t  s o l u t i o n  t o  (10) - (12)  and 

{ W E ~  C Vh, C Sh be t h e  sequences def ined  by (24).  Suppose n=l  n= 0 

, 
2h 

where a is def ined  by (25).  Then t h e r e  e x i s t s  a cons tan t  C = C(T) such 

t h a t  

where p = min(r-1,s-1). 

-9- 



where 

k 3 k - k  
Y = -(w ax -W,L  

vk = -(a -ah ).  a k - k  
ax 

Summing from k = 1 t o  k = n and us ing  t h e  Schwartz i n e q u a l i t y  a long wi th  

2 
t h e  i n e q u a l i t y  ab - < (Ea2/2) + (b /2&) f o r  E p o s i t i v e  g ives  



. 

where 

2 3 -* -0 0 
)) + x(0 -0 scr -0 ) . h h h  

Then 

( 25a) 

where K i s  some cons tan t  which i s  independent of A t  and 0 .  

mates hold f o r  E ~ ,  ck 2, and 6;. 

S u b s t i t u t i n g  (24) and (25) i n t o  (23) ,  and us ing  (20) g ives  

S i m i l a r  e s t i -  

I 

-11- 



Taking the sup over 

and (16) gives (22) and proves the theorem. 

h 

k and using the triangle inequality along with (15) 

The optimal order of convergence in can be obtained for certain 

subspaces in the same way as for the semi-discrete approximation. 

show that the stability requirement (20) is the same as that given i n  Bathe 

and Wilson [2, Chapter 91.  

We now 

For the general dynamic elasticity problem, 

the system (10) becomes 

w t = T*g + f 

For (26), the inequality (20) becomes 

all @ E  Vh , 

or 

Let ~ y = ~  be a basis for Vh. Then for Qh€Vh, 

so that 

and thus 

(27) a = JX 
h I M X  - 

-12- 



Here K and M are respectively the "stiffness" matrix and the "mass" 

matrix, and xmax is the largest eigenvalue of XMv = Kv. This agrees 

with what Bathe and Wilson, [2, page 3531, determined for the centered 

difference method applied to the second order equation. 

We now show that the third order Runge-Kutta method when applied to 

the semi-discrete Galerkin approximation is stable. Convergence can then 

be shown by applying the classical theorem that stability plus consistency 

equals convergence. 

second and fourth order Runge-Kutta methods applied to the semi-discrete 

Galerkin approximation are unstable. The third order Runge-Kutta method 

can be written as the three step procedure (see [ 6 ,  page 431) 

The same techniques can be used to show that the 

n At n 
3 

n+ f - - u + ---(ut) u s 

n+ 2 n 2 ~ t  n+l 
u 3 = u +,(u') 3 ,  

2 n At n+ - 
U n+l = u + T(3(U') 3 + (ut)")  . 

are the coefficients and (3; n T  n Let un be the vector [gn,B 1 , where ai 

in the expansions 

- 

m2 
an = 1 Bn$ n- ml 

.wn = 1 aiOi 9 

j=1 j j i= 1 

are orthonormal bases with respect to the inner ml and {Giliz1 m2 where {$i}i=l, 

product ( * , e )  for V5 and Sh respectively. For the system (13), (28) can 

be expressed (for f = 0 )  as 

where 



where C is the rectangular matrix with elements c ti = ((qi),,Gj). 

Note that 

- 
k Theorem 3 .  Let {E } be the sequence defined by (29) where u" i s  

obtained from (14). Then 

n+l 0 2  lllu I l l  L Ill: Ill 

provided that 

( 3 0 )  

Proof. Take the 1 1 1 .  1 1 1  norm of both sides of ( 2 9 ) .  Because 

B is skew-symmetric, most of the terms on the right side drop out and we 

are 

!I 

left with 

n 2  
- < lllu I l l  

if (30) holds. The theorem now follows by recursion. 

111. The Nonlinear Problem 

We let w = ut, a = u X + and write (9), (4), and (5) as 

a w t = -((l+u,>a) ax + f , 

V 

. 



t 

subject to the initial conditions 
m 

auO (32) W(X,O) = U,(X) y CJ(x,O) = -(x) ax + 1 

and the boundary condition 

(33) w(0,t) = (w(1,t) = 0 . 

To obtain the second equation in (31), we needed to assume that we could 

interchange time and space differentiations. 

The system (31) - (33) can be written in weak form as 

2 The semi-discrete Galerkin method we consider is: 

ah€ L (OyT;Sh) such that 

find wh< L (O,T;Vh), 

2 
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Theorem 4. Let (w,~) be the solution to ( 3 4 )  - ( 3 5 )  and 

(whyah) 

time 5 such that 0 5 5 T 

be the semi-discrete Galerkin solution to ( 3 6 )  - ( 3 7 ) .  A t  any 



.. 

= 2 15 (f(-,t),w) 
0 

Taking the sup over all 5 such that 0 6 5 T gives (38). The inequality 

(39) and the identities ( 4 0 )  and (41) are derived in the same way. 

Note that the identities (40) and (41) indicate that both the weak 

system ( 3 4 )  - (35) and the semi-discrete Galerkin system (36) = (37) con- 

serve energy (for f = 0 ) .  This was true also of the linear problem. 

It has been observed [ll, page 1281 and [ 5 ]  that the use of leap frog 

in nonlinear problems can cause difficulties because of nonlinear instabi- 

lity. For a system like (31) where the semi-discrete approximation is 

conservative this nonlinear instability seems to occur only when the 

coefficient 1 + ux oscillates around zero.  See [5, page 2071. 

One can avoid this instability by adding a small dissipative term to the 

left hand side. Thus, one replaces t h e  mass matrix M by M + ci(At) K, 

where K is the stiffness matrix, and 01 is some constant. I f  this is done 

only to (19b) the procedure can be thought of as adding artificial damping. 

It can be shown that this does not reduce the order of convergence. The 

addition of artificial damping can also be used as a way of treating shocks 

analogously to artificial viscosity for inviscid fluid flows. An excellent 

discussion of the motivation behind artificial viscosity is given in Lax [ 7 1 .  

2 
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